Quad Bilateral Switch

IW4016B

General Description

The IW4016B is a quad bilateral switch intended for the transmission or multiplexing of analog or digital signals.

Features

■ Wide supply voltage range: 3 V to 15 V
■ Wide range of digital and analog switching: $\pm 7.5 \mathrm{~V}_{\text {PEAK }}$
■ "ON" resistance for 15 V operation: 400Ω (typ.)
■ Matched "ON" resistance over 15 V signal input: $\Delta \mathrm{R}_{\mathrm{ON}}=10 \Omega$ (typ.)

- High degree of linearity:
0.4% distortion (typ.)
$@ f_{\text {IS }}=1 \mathrm{kHz}, \mathrm{V}_{\text {IS }}=5, \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
$V_{D D}-V_{S S}=10 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega$
■ Extremely low "OFF" switch leakage:
0.1 nA (typ.)
@ $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}$
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
■ Extremely high control input impedance: 10^{12} (typ.)
- Low crosstalk between switches:
-50 dB (typ.)
$@ f_{\mathrm{IS}}=0.9 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
■ Frequency response, switch "ON": 40 MHz (typ.)

Applications

- Analog signal switching/multiplexing

Signal gating
Squelch control
Chopper
Modulator/Demodulator
Commutating switch

- Digital signal switching/multiplexing
- CMOS logic implementation
- Analog-to-digital/digital-to-analog conversion
- Digital control of frequency, impedance, phase, and ana-log-signal gain

Pin Assignment

FUNCTION TABLE

INPUT of Control	Analog Switch Mode
L	Close
H	Open

Schematic Diagram

Absolute Maximum Ratings (Note 1)

(Note 2)
$V_{\text {DD }}$ Supply Voltage
$V_{\text {IN }}$ Input Voltage
T_{S} Storage Temperature Range
Power Dissipation (P_{D})

Dual-In-Line
Small Outline
Lead Temperature
(Soldering, 10 seconds)

$$
\begin{array}{r}
-0.5 \mathrm{~V} \text { to }+18 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
\end{array}
$$

700 mW
500 mW
$260^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 2)

$V_{D D}$ Supply Voltage	3 V to 15 V
$\mathrm{~V}_{\text {IN }}$ Input Voltage	0 V to V_{DD}
T_{A} Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.
Note 2: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.

DC Electrical Characteristics (Note 2)

Parameter, Units	Symbol	Conditions, Units				Limits					
						$-55^{\circ} \mathrm{C}$		$125^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$	
		$\begin{gathered} \hline \mathrm{V}_{\mathrm{LL}}, \\ \mathrm{~V} \end{gathered}$	$\mathrm{V}_{\mathrm{HH}},$	$\begin{aligned} & \mathrm{I}_{\mathrm{o}}, \\ & \mathrm{~mA} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}, \\ \mathrm{~V}, \end{gathered}$	Min	Max	Min	Max	Min	Max
Low Level Input Voltage, V	VILC		- -	- -	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 0.9 \\ & 0.9 \\ & 0.9 \end{aligned}$		$\begin{aligned} & \hline 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$		$\begin{aligned} & \hline 0.7 \\ & 0.7 \\ & 0.7 \end{aligned}$
High Level Input Voltage, V	$\mathrm{V}_{\text {IHс }}$				$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{gathered} 3.5 \\ 7 \\ 11 \\ \hline \end{gathered}$		$\begin{gathered} 3.5 \\ 7 \\ 11 \\ \hline \end{gathered}$		$\begin{gathered} 3.5 \\ 7 \\ 11 \\ \hline \end{gathered}$	- - -
Switch Output Voltage, V	$\mathrm{V}_{\text {os }}$	$\mathrm{V}_{1 S}=0 \mathrm{~B}$		$\begin{array}{\|c\|} \hline 0.25 \\ \\ \hline 0.14 \\ 0.2 \\ \hline \end{array}$	$\begin{aligned} & \hline 5.0 \\ & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	0.4	-	${ }^{-}$	-	0.4	
				$\begin{gathered} 0.62 \\ 0.36 \\ 0.5 \\ \hline 0 \end{gathered}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	0.5	-	0.5	-	$\begin{gathered} - \\ - \\ 0.5 \end{gathered}$	
				$\begin{aligned} & 1.8 \\ & 1.1 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	1.5	-	1.5	-	1.5	
		$\mathrm{V}_{\text {IS }}=5.0 \mathrm{~V}$		$\begin{array}{r} -0.25 \\ -0.14 \\ \hline \end{array}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	4.6	-	4.6	-	4.6	-
		$\mathrm{V}_{\text {IS }}=10 \mathrm{~V}$		$\begin{gathered} -0.62 \\ -0.36 \\ -0.5 \end{gathered}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	9.5	-	9.5	-	9.5	-
		$\mathrm{V}_{1 \mathrm{~S}}=15 \mathrm{~V}$		$\begin{array}{\|l\|} \hline-1.8 \\ -1.1 \\ -1.5 \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & \hline \end{aligned}$	13.5	-	13.5	-	13.5	

DC Electrical Characteristics (continue)

Parameter, Units	Symbol	Conditions, Units				Limits					
						$-55^{\circ} \mathrm{C}$		$125^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$	
		$\begin{aligned} & \mathrm{v}_{\mathrm{IL}}, \\ & \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{iH}}, \\ & \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{o}}, \\ & \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}, \\ \mathrm{~V} \end{gathered}$	Min	Max	Min	Max	Min	Max
Input/Output Overshoot Voltage Amplitude, mV	$\mathrm{V}_{\text {Alo }}$	$\mathrm{V}_{\mathrm{C}}=10 \mathrm{~V},$ $\mathrm{R}_{\mathrm{L}}=10 \mathrm{kOhm}$, $\mathrm{t}_{\mathrm{LH}}=\mathrm{t}_{\mathrm{HL}} \leq 20 \mathrm{nsec}$			10	-	-	-	${ }^{-}$	50*	
Quiescent Device Current, uA	I_{DD}				$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & 20 \\ & \hline \end{aligned}$		$\begin{gathered} \hline 0.25 \\ 0.5 \\ 1.0 \\ 5.0 \\ \hline \end{gathered}$	- - -	$\begin{array}{\|c\|} \hline 7.5 \\ 15 \\ 30 \\ 150 \\ \hline \end{array}$	- - -	$\begin{gathered} \hline 0.25 \\ 0.5 \\ 1.0 \\ 5.0 \\ \hline \end{gathered}$
Input/Output Leakage, uA	ILIO	0	18	-	18	-	± 0.1	-	± 1.0	-	± 0.1
Low Level Input Current, uA	$1 / L$	0	-	-	18	-	-0.1	-	-1.0	-	-0.1
High Level Input Current, uA	I_{H}		18	-	18	-	0.1	-	1.0	-	0.1

Note 3: If the switch input is held at $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IHC}}$ is the control input level that will cause the switch output to meet the standard " B " series V_{OH} and I_{OH} output levels. If the analog switch input is connected to $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{IHC}}$ is the control input level - which allows the switch to sink standard "B" series $\|_{\mathrm{OH}} \mid$, high level current, and still maintain a $\mathrm{V}_{\mathrm{OL}} \leq$ " B " series. These currents are shown in Figure 8.

AC Electrical Characteristics (Note 4)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified

* Typical value

Note 4: AC Parameters are guaranteed by DC correlated testing.
Note 5: These devices should not be connected to circuits with the power "ON".
Note 6: In all cases, there is approximately 5 pF of probe and jig capacitance on the output; however, this capacitance is included in C_{L} wherever it is specified.
Note 7: $\mathrm{V}_{\text {IS }}$ is the voltage at the in/out pin and V_{OS} is the voltage at the out/in pin. V_{C} is the voltage at the control input.

AC Electrical Characteristics (continue)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified

Parameter, Units	Symbol	Conditions,				Limits					
		Units						$+125^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$	
						$-55^{\circ} \mathrm{C}$					
		$\begin{aligned} & \hline \mathbf{V}_{\mathrm{IL}}, \\ & \mathbf{V}, \end{aligned}$	$\begin{aligned} & \mathbf{V}_{\mathbf{I H}}, \\ & \mathbf{V}, \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}, \\ & \mathrm{~mA} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD},}, \\ \mathbf{V} \end{gathered}$	Min	Max	Min	Max	Min	Max
Harmonic Factor, \%	Kh	$\begin{gathered} V_{C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IS}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{kOhm}, \\ \mathrm{f}_{\mathrm{IS}}=1 \text { кГц } \end{gathered}$			5.0	-	-	-	-	0.4*	
Frequency Response Switch "ON" (Frequency at -3dB), MHz	BW	$\begin{gathered} \mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IS}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{kOhm}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{t}_{\mathrm{LH}}=\mathrm{t}_{\mathrm{HL}} \leq 20 \mathrm{nsec} \\ \text { (Figure 4) } \end{gathered}$			5.0	-	-	-	-	40*	
Frequency Response Switch "OFF" (Frequency at -50dB), MHz	f_{1}	$\begin{gathered} \mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \\ \mathrm{~V}_{I S}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{kOhm}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{t}_{\mathrm{LH}}=\mathrm{t}_{\mathrm{HL}} \leq 20 \mathrm{nsec} \\ \text { (Figure 4) } \end{gathered}$			5.0	-	-	-	-	1.25*	
Crosstalk Between Any Two Swithes (Frequency at -50dB), MHz	f_{2}	(Figure 5)			5.0	-	-	-	-	0.9*	
Switching Frequency, MHz	$\mathrm{f}_{\text {S }}$	$\begin{array}{\|c} \hline \mathrm{V}_{\mathrm{C}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{GND}, \\ \mathrm{~V}_{\mathrm{IS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{kOhm}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{t}_{\mathrm{L}=\mathrm{t}_{\mathrm{HLL}} \leq 20 \text { nsec }} \\ \mathrm{V}_{\mathrm{OS}}=1 / 2 \mathrm{~V}_{\mathrm{OS}} \text { under } \\ \text { frequency } 1 \mathrm{kHz} \\ \hline \end{array}$			10	-	${ }_{-}^{-}$	-	${ }^{-}$	10*	
Propagation Delay Time Signal Input to Signal Output, nsec	$\begin{gathered} \mathrm{t}_{\mathrm{PHL}} \\ \left(\mathrm{t}_{\mathrm{PLLH}}\right) \end{gathered}$				$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	-	$\begin{aligned} & 70 \\ & 40 \\ & 30 \\ & \hline \end{aligned}$	-	$\begin{gathered} 200 \\ 80 \\ 60 \\ \hline \end{gathered}$	-	100 40 30

* Typical value

Note 4: AC Parameters are guaranteed by DC correlated testing.
Note 5: These devices should not be connected to circuits with the power "ON".
Note 6: In all cases, there is approximately 5 pF of probe and jig capacitance on the output; however, this capacitance is included in C_{L} wherever it is speci-
fied.
Note 7: $\mathrm{V}_{\text {IS }}$ is the voltage at the in/out pin and V_{OS} is the voltage at the out/in pin. V_{C} is the voltage at the control input.

AC Test Circuits and Switching Time Waveforms

FIGURE 2. $\mathrm{t}_{\mathrm{PZH}}$, $\mathrm{t}_{\text {PHZ }}$ Propagation Delay Time Control to Signal Output

FIGURE 3. $\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$ Propagation Delay Time Control to Signal Output

$=V_{D D}$ for distortion and frequency response tests
$=V_{\text {SS }}$ for feedthrough test
FIGURE 4. Sine Wave Distortion, Frequency Response and Feedthrough

AC Test Circuits and Switching Time Waveforms (Continued)

FIGURE 5. Crosstalk Between Any Two Switches

FIGURE 6. Crosstalk - Control to Input Signal Output

vos

[^0]
Typical Performance Characteristics

Typical Applications

Special Considerations

The IW4016B is composed of 4, two-transistor analog switches. These switches do not have any linearization or compensation circuitry for "R $\mathrm{ON}_{\mathrm{ON}}$ " as do the IW4066B's. Because of this, the special operating considerations for the IW4066B do not apply to the IW4016B, but at low supply voltages, $\leq 5 \mathrm{~V}$, the IW4016B's on resistance becomes
non-linear. It is recommended that at 5 V , voltages on the in/ out pins be maintained within about 1 V of either V_{DD} or V_{SS}; and that at 3 V the voltages on the in/out pins should be at $V_{D D}$ or $V_{S S}$ for reliable operation.

N SUFFIX PLASTIC DIP

(MS - 001AA)

$母$	$0.25(0.010)(M)$	T

NOTES:

1. Dimensions "A", "B" do not include mold flash or protrusions. Maximum mold flash or protrusions $0.25 \mathrm{~mm}(0.010)$ per side.

D SUFFIX SOIC

(MS - 012AB)

NOTES:

1. Dimensions A and B do not include mold flash or protrusion.
2. Maximum mold flash or protrusion $0.15 \mathrm{~mm}(0.006)$ per side for A ; for B - $0.25 \mathrm{~mm}(0.010)$ per side.

Symbol	Dimensions, mm	
	MIN	MAX
A	18.67	19.69
B	6.10	7.11
C		5.33
D	0.36	0.56
F	1.14	1.78
G		
H		
J	0°	10°
K	2.92	3.81
L	7.62	8.26
M	0.20	0.36
N	0.38	

Symbol.	Dimensions, mm	
	MIN	MAX
A	8.55	8.75
B	3.80	4.00
C	1.35	1.75
D	0.33	0.51
F	0.40	1.27
G	1.27	
H	5.72	
J	0°	8°
K	0.10	0.25
M	0.19	0.25
P	5.80	6.20
R	0.25	0.50

[^0]: FIGURE 7. Maximum Control Input Frequency

